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Cyclic Groups

Click on the “Ans” button to get a hint.
Shift-click on “Ans” buttons that have a green boundary to get a

full solution. Click on the green square to go back to the questions.

Quiz

1. How many elements in (Z/11Z)
∗
?

=

2. Find a single element that generates (Z/11Z)
∗
.

=

3. What is the order of 5 in (Z/11Z)
∗
?

=

Exercise 1.

(a) Let p be a prime such that p = 2q + 1, where q is also prime. We
call p with this property a ‘strong’ prime or ‘safe’ prime. Let g
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be a generator of (Z/pZ)
∗
. How can we generate a group of order

q?

Cyclic Groups in SAGE

Try out the following sequence of SAGE commands, and verify that
the first 3 results match with your answers to the first 3 questions.

Exercise 2.

(a) euler phi(11)
(b) primitive root(11)
(c) To find the order of 5:

R = Integers(11)
a = R(5)
a.multiplicative order()

(d) Compute (easy) discrete logarithms:
R = Integers(11)
a = R(5)
b = a*a*a*a
a.log(b)
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(e) Compute modular square roots:
R = Integers(7)
a = R(3)
b = a*a
mod(2,7).sqrt()

The Fermat Factorisation Algorithm

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 3.

(a) Given that 1309 = 472 − 302, what is the prime factorisation of
1309?

(b) Let N, a, b be odd, positive integers such that N = ab. Show
that N can be expressed as the difference between two square
numbers.

(c) The incomplete function ‘Fermat’ implements a factorisation al-
gorithm. The function takes input N , and should output a, b such

JJ II J I Back



5

that N = ab. Please fill in the question marks to obtain a com-
plete implementation of the Fermat factorisation algorithm.

def fermat(N):
n = ceil(sqrt(N))
while ???:

M = n*n-N
m = floor(sqrt(M))
if m == sqrt(M):

return ???
n = n+1

(d) Use your completed code to find the factors ofN = 1488391, 1467181,
1456043. Can you see a connection between the running time of
your code and the prime factors of N?

Polynomials in SAGE

Exercise 4.

(a) Try out the following sequence of SAGE commands.
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ZP.< x > = ZZ[]
(x∧5 + 3 ∗ x∧2− 2 ∗ x+ 7) // (x + 1)
(x∧5 + 3 ∗ x∧2− 2 ∗ x+ 7).quo rem(x + 1)
gcd(3 ∗ x∧2 + 6 ∗ x− 9, 5 ∗ x∧3− 2 ∗ x+ 2)
factor(3 ∗ x∧5 + 5 ∗ x− 8)
(3 ∗ x∧5 + 5 ∗ x− 8).factor mod(3)

Elliptic Curves

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Exercise 5. Let E : y2 = x3 + ax + b be an elliptic curve. Let
P = (x1, y1) and Q = (x2, y2). Write + for the operation of adding
two points. Beware: P +Q 6= (x1 + x2, y1 + y2)!

(a) Watch the tutorial on elliptic curve point addition at https://

www.youtube.com/watch?v=XmygBPb7DPM.
(b) Browse the internet to find the formulae for the coordinates of

JJ II J I Back

https://www.youtube.com/watch?v=XmygBPb7DPM
https://www.youtube.com/watch?v=XmygBPb7DPM


7

P +Q when P 6= Q. What about when P = Q? You can assume
that Q 6= (x1,−y1) since things are slightly different in this case.

(c) Let E : y2 = x3 + 3x + 3 be an elliptic curve, defined over F7.
Two points on the curve are P = (4, 3) and Q = (3, 2). Verify
that 2∗P = Q (remember that 2∗P = P + P ).

(d) Construct E,P,Q in SAGE using the following commands. Check
your answer to the previous part by typing 2 ∗P (the answer will
have three coordinates, for reasons to be explained in lectures, but
ignore the last coordinate). What is P +Q?

p = 7
E = EllipticCurve( GF(p),[3,3] )
P = E(4,3)
Q = E(3,2)

(e) Type E.cardinality() to find out how many points lie on this
elliptic curve.

(f) Type E.gens() to obtain a set of points which generate all points
in the elliptic curve group.
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Rabin Cryptosystem

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Exercise 6. Let p, q be two large primes which are congruent to 3
modulo 4. Set N = pq.

(a) Let c ≡ m2 ∈ Z/pZ. Set m′ ≡ c(p+1)/4 mod p. What is (m′)2?
(b) The Rabin cryptosystem encrypts a message m mod N by setting

c ≡ m2 mod N . Suppose that you know p, q. Use the first part
of the question to describe how to decrypt a message. Hint: use
the Chinese Remainder Theorem.

(c) With a partner, generate two primes which are suitable for the
Rabin cryptosystem. Now, using SAGE, write programs which
can encrypt and decrypt a message. The CRT command is very
useful for this.
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Smooth Numbers

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Exercise 7. Smooth numbers are useful in index calculus attacks
for factorising and computing discrete logarithms. A number n is B-
smooth if all of the prime factors of n are ≤ B. Let Ψ(B,N) be the
number of B-smooth numbers that are ≤ N .

(a) Write a program to find Ψ(B,N)/N for (B,N) = (10, 1010),
(15, 107),(100, 104).

Some tips: Try to write a program which efficiently generates
the smooth numbers ≤ N from the primes ≤ B, for example,
by computing products of these primes and checking if they are
smaller than N . This will be much faster than a program which
factorises each number ≤ N and checks whether the prime factors
are ≤ B. If you want to be extremely efficient, try to think of a
clever way to avoid storing all of the numbers, and alternatives to
computing lots and lots of products.
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(b) We have the approximation Ψ(B,N) ≈ 1
π(B)!

∏
p≤B

logN
log p , where

π(B) is the number of primes ≤ B. Compare the approximate
values of Ψ/N with the true values computed by your program.
How close are these to the values you computed?
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Solutions to Exercises

Exercise 1(a) The order of g is φ(p) = p− 1 = 2q. We can compute
g2 mod p, and this element will have order q, generating a subgroup
of size q. �
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Solutions to Exercises 12

Exercise 3(a) We have 1309 = (47 + 30)(47− 30) = 77 · 17. �

JJ II J I Back



Solutions to Exercises 13

Exercise 3(b) Write N =
(
a+b
2

)2 − (a−b2 )2. Each bracketed expres-
sion is a whole number, because N is odd, so a, b are both odd, and
therefore a± b is even. �

JJ II J I Back



Solutions to Exercises 14

Exercise 3(c) The following code implements the Fermat Factorisa-
tion algorithm.

def fermat(N):
n = ceil(sqrt(N))
while True:

M = n*n-N
m = floor(sqrt(M))
if m == sqrt(M):

return [n+m,n-m]
n = n+1

�
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Exercise 3(d) The Fermat factorisation method finds factors of N
as n + m and n − m, where N = n2 − m2. The value of n + m is
at least

√
N and increases as n is incremented. Therefore, Fermat

factorisation runs fastest on integers N which have factors close to√
N . �
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Exercise 5(b) If P 6= Q, we set s = (y1 − y2)(x1 − x2)−1. If P = Q,
we take s = (3x21 + a)(2y1)−1. Then, (x3, y3) = (x1, y1) ⊕ (x2, y2),
where x3 = s2 − x1 − x2, and y3 = s(x1 − x3)− y1.

These formulae come from the definition of addition on an ellip-
tic curve that you saw in the video. This uses different points of
intersection between straight lines and the curve. �
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Exercise 5(c) Substituting the coordinates of P into the correct
formula from the previous part shows that 2∗P = Q. �
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Exercise 5(d) You should find that P +Q = (1, 0). �
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Exercise 6(a) By Fermat’s Little Theorem, we have that (m′)2 ≡ c
mod p. �
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Exercise 6(b) We can compute cp ≡ c mod p and cq ≡ c mod q.
Using the first part of the question, we can compute the square roots
mp with m2

p = cp mod p and m2
q = cq mod q. Finally, we can use the

Chinese Remainder Theorem to compute m mod N from mp mod p
and mq mod q. �

JJ II J I Back
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Exercise 7(a) The following code counts smooth numbers.
def CountSmooth(B,N):

P = Primes()
prime = 3
prime list = [2]

while prime ¡= B:
prime list.append(prime)
prime = next prime(prime)

smooth numbers = [1]

for number in smooth numbers:
for prime in prime list:

n = number*prime
if not (n in smooth numbers):

if n ¡= N:
smooth numbers.append(n)

return len(smooth numbers)-1
�
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Solutions to Quizzes

Solution to Quiz: The number of elements in (Z/NZ)
∗

is φ(N), so
in this case, the answer is φ(11) = 10. �
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Solutions to Quizzes 23

Solution to Quiz: If we compute the powers of 2 modulo 11, we
get 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, so 2 is a generator. Alternatively, by La-
grange’s Theorem, the order of an element divides the size of the
group. The size of the group is 10, so the only possibilities for the
order of an element are 1, 2, 5, and 10. A group generator should
have order 10 to generate every group element, so to check that 2 is
a generator, we just have to check that 22 6= 1 mod 11, and 25 6= 1
mod 11, implying that 2 has order 10. �
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Solutions to Quizzes 24

Solution to Quiz: The smallest n such that 5n = 1 mod 11 is
n = 5.Alternatively, by Lagrange’s Theorem, the order of an element
divides the size of the group. The size of the group is 10, so the only
possibilities for the order of an element are 1, 2, 5, and 10. Therefore,
it is enough to check that 52 6= 1 mod 11, and 55 = 1 mod 11. �
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